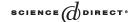


Available online at www.sciencedirect.com



JOURNAL OF Approximation Theory

Journal of Approximation Theory 131 (2004) 149-156

www.elsevier.com/locate/jat

The uniform closure of non-dense rational spaces on the unit interval☆

Tamás Erdélyi*

Department of Mathematics, Center for Approximation Theory, Office Milner 308, College Station, TX 77843-3368, USA

Received 6 December 2002; accepted in revised form 25 June 2004

Communicated by Peter B. Borwein

Abstract

Let \mathscr{P}_n denote the set of all algebraic polynomials of degree at most n with real coefficients. Associated with a set of poles $\{a_1, a_2, \ldots, a_n\} \subset \mathbb{R} \setminus [-1, 1]$ we define the rational function spaces

$$\mathcal{P}_n(a_1, a_2, \dots, a_n) := \left\{ f : f(x) = b_0 + \sum_{j=1}^n \frac{b_j}{x - a_j}, \quad b_0, b_1, \dots, b_n \in \mathbb{R} \right\}.$$

Associated with a set of poles $\{a_1, a_2, \ldots\} \subset \mathbb{R} \setminus [-1, 1]$, we define the rational function spaces

$$\mathscr{P}(a_1, a_2, \ldots) := \bigcup_{n=1}^{\infty} \mathscr{P}_n(a_1, a_2, \ldots, a_n).$$

It is an interesting problem to characterize sets $\{a_1,a_2,\ldots\}\subset\mathbb{R}\setminus[-1,1]$ for which $\mathscr{P}(a_1,a_2,\ldots)$ is not dense in C[-1,1], where C[-1,1] denotes the space of all continuous functions equipped with the uniform norm on [-1,1]. Akhieser showed that the density of $\mathscr{P}(a_1,a_2,\ldots)$ is characterized by the divergence of the series $\sum_{n=1}^{\infty}\sqrt{a_n^2-1}$.

In this paper, we show that the so-called Clarkson-Erdős-Schwartz phenomenon occurs in the non-dense case. Namely, if $\mathcal{P}(a_1, a_2, \ldots)$ is not dense in C[-1, 1], then it is "very much not so". More precisely, we prove the following result.

E-mail address: tamas.erdelyi@math.tamu.edu, terdelyi@math.tamu.edu.

0021-9045/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jat.2004.06.012

[↑]Research is supported, in part, by NSF under Grant No. DMS-0070826 Fax: +1-409-845-6028.

Theorem. Let $\{a_1, a_2, \ldots\} \subset \mathbb{R} \setminus [-1, 1]$. Suppose $\mathcal{P}(a_1, a_2, \ldots)$ is not dense in C[-1, 1], that is,

$$\sum_{n=1}^{\infty} \sqrt{a_n^2 - 1} < \infty.$$

Then every function in the uniform closure of $\mathcal{P}(a_1, a_2, ...)$ in C[-1, 1] can be extended analytically throughout the set $\mathbb{C}\setminus\{-1, 1, a_1, a_2, ...\}$. © 2004 Elsevier Inc. All rights reserved.

MSC: primary 41A17; secondary 26D10; 26D15

Keywords: Bernstein-type inequalities; Rational functions; Density; Uniform closure

Throughout this paper $||f||_A$ will denote the uniform norm of a continuous function f on a set $A \subset \mathbb{C}$. Let \mathscr{P}_n denote the set of all algebraic polynomials of degree at most n with real coefficients. Associated with a set of poles $\{a_1, a_2, \ldots, a_n\} \subset \mathbb{R} \setminus [-1, 1]$ we define the rational function spaces

$$\mathscr{P}_n(a_1, a_2, \dots, a_n) := \left\{ f : f(x) = b_0 + \sum_{j=1}^n \frac{b_j}{x - a_j}, b_0, b_1, \dots, b_n \in \mathbb{R} \right\}.$$

Note that every $f \in \mathcal{P}_n(a_1, a_2, \dots, a_n)$ can be written as f = p/q with

$$p \in \mathscr{P}_n$$
 and $q(x) = \prod_{j=1}^n (x - a_j)$.

Associated with a set of poles $\{a_1, a_2, \ldots\} \subset \mathbb{R} \setminus [-1, 1]$, we define the rational function spaces

$$\mathscr{P}(a_1, a_2, \ldots) := \bigcup_{n=1}^{\infty} \mathscr{P}_n(a_1, a_2, \ldots, a_n).$$

It is an interesting problem to characterize sets $\{a_1, a_2, \ldots\} \subset \mathbb{R} \setminus [-1, 1]$ for which $\mathcal{P}(a_1, a_2, \ldots)$ is not dense in C[-1, 1], where C[-1, 1] denotes the space of all continuous functions equipped with the uniform norm on [-1, 1]. Akhieser presents the answer (which is recaptured in [1], see Corollary 4.3.4 on p. 208) in his book by proving the following result.

Theorem (Akhieser). Let $\{a_1, a_2, \ldots\} \subset \mathbb{R} \setminus [-1, 1]$. Then $\mathcal{P}(a_1, a_2, \ldots)$ is dense in C[-1, 1] if and only if

$$\sum_{n=1}^{\infty} \sqrt{a_n^2 - 1} = \infty.$$

In this paper, we show that the so-called Clarkson–Erdős–Schwartz phenomenon occurs in the non-dense case. Namely if $\mathcal{P}(a_1, a_2, ...)$ is not dense in C[-1, 1], then it is "very much not so". More precisely, we prove the following result.

Theorem 1. Let $\{a_1, a_2, \ldots\} \subset \mathbb{R} \setminus [-1, 1]$. Suppose $\mathcal{P}(a_1, a_2, \ldots)$ is not dense in C[-1, 1], that is,

$$\sum_{n=1}^{\infty} \sqrt{a_n^2 - 1} < \infty.$$

Then every function in the uniform closure of $\mathcal{P}(a_1, a_2, ...)$ in C[-1, 1] can be extended analytically throughout the set $\mathbb{C} \setminus \{-1, 1, a_1, a_2, ...\}$.

Theorem 1 follows immediately from our main result below.

Theorem 2. Suppose (a_i) is a sequence with each $a_i \in \mathbb{R} \setminus [-1, 1]$. Suppose

$$\sum_{j=1}^{\infty} \sqrt{a_j^2 - 1} < \infty.$$

Then there is a constant C_{η} depending only on $\eta > 0$ and the sequence (a_i) such that

$$|f(z)| \leq C_{\eta} ||f||_{[-1,1]}$$

for every $f \in \mathcal{P}(a_1, a_2, ...)$ and $z \in \mathbb{C} \setminus \{a_1, a_2, ..., a_n\}$ such that the distance between the point z and the set $\{-1, 1\}$ is at least $\eta > 0$.

Theorem 2 is the key observation of this paper. Theorem 1 follows immediately from Theorem 2. Indeed, suppose the sequence (f_n) with $f_n \in \mathcal{P}(a_1, a_2, \ldots)$ converges uniformly on [-1, 1]. Then it is also uniformly Cauchy on [-1, 1]. By Theorem 2, it remains uniformly Cauchy on any compact set $K \subset \mathbb{C} \setminus \{-1, 1, a_1, a_2, \ldots\}$. Theorem 1 now follows from the well known theorem in complex analysis stating that a uniformly convergent sequence of analytic functions on a compact set K has an analytic limit function on K.

From now on we focus on proving Theorem 2. First an extremal function for the problem is introduced and then some nice properties of the extremal function is established in Lemma 1.

Let $z_0 \in \mathbb{C} \setminus ([-1, 1] \cup \{a_1, a_2, \dots, a_n\})$ be fixed. A simple compactness argument shows that there exists a function $0 \neq f^* \in \mathcal{P}_n(a_1, a_2, \dots, a_n) 0 \neq f^*$ such that

$$\frac{|f^*(z_0)|}{\|f^*\|_{[-1,1]}} = \sup_{0 \neq f \in \mathscr{P}_n(a_1, a_2, \dots, a_n)} \frac{|f(z_0)|}{\|f\|_{[-1,1]}}.$$
 (1)

Lemma 1. Suppose $f^* \in \mathcal{P}_n(a_1, a_2, ..., a_n)$ satisfy (1). Then the following statements hold.

(i) The function f^* equioscillates on [-1, 1] at least n times. That is, there are

$$-1 < x_1 < x_2 < \cdots < x_n < 1$$

such that

$$f^*(x_i) = \pm (-1)^j ||f^*||_{[-1,1]}, \quad j = 1, 2, \dots, n.$$

(ii) f^* has only real zeros. All but at most one zeros of f^* are in (-1, 1).

Proof. The proof of (i) can be given by a standard variational method. Assume that statement (i) of the lemma is false. Let $x_1 \in [-1, 1]$ be the smallest number such that $f^*(x_1) = \pm \|f^*\|_{[-1,1]}$. Let $x_2 \in [x_1, 1]$ be the smallest value for which $f^*(x_2) = -f^*(x_1)$. Inductively, let $x_k \in [x_{k-1}, 1]$ be the smallest value such that $f^*(x_k) = -f^*(x_{k-1})$, $k = 2, 3, \ldots, m$, and assume that there is no $x_{m+1} \in [x_m, 1]$ such that $f^*(x_{m+1}) = -f^*(x_m)$. By our indirect assumption, we have $m \le n-1$. Choose $y_1, y_2, \ldots, y_{m-1}$ so that

$$x_1 < y_1 < x_2 < y_2 < x_3 < \cdots < x_{m-1} < y_{m-1} < x_m$$
.

We define

$$q_{m+1}(x) = (x - z_0)(x - \overline{z_0})(x - y_1)(x - y_2) \cdots (x - y_{m-1}).$$

Then $q_{m+1} \in \mathcal{P}_n$, and for sufficiently small $\varepsilon > 0$ either

$$f^*(x) + \varepsilon \frac{q_{m+1}(x)}{(x-a_1)(x-a_2)\cdots(x-a_n)} \in \mathscr{P}_n(a_1, a_2, \dots, a_n)$$

or

$$f^*(x) - \varepsilon \frac{q_{m+1}(x)}{(x-a_1)(x-a_2)\cdots(x-a_n)} \in \mathscr{P}_n(a_1, a_2, \dots, a_n)$$

contradicts the extremality of f^* . Hence (i) is proved. To see (ii) we can argue as follows. By using the Intermediate Value Theorem, (i) implies that all but at most one zero of f^* are in (-1, 1). Since $f^* \in \mathcal{P}_n(a_1, a_2, \ldots, a_n)$ can be written as $f^* = p/q$ with

$$p \in \mathscr{P}_n$$
 and $q(x) = \prod_{j=1}^n (x - a_j)$,

we conclude that the only possibly remaining zero of f^* is also real. \square

Our next tool is the bounded Bernstein-type inequality below for non-dense rational spaces $\mathcal{P}(a_1, a_2, \ldots)$. This is proved in [1] (see Corollary 7.1.4 on p. 323) and plays an important role in the proof Theorem 2.

Lemma 2. Suppose $\{a_1, a_2, \ldots, a_n\} \subset \mathbb{R} \setminus [-1, 1]$. Then

$$|f'(x)| \le \frac{1}{\sqrt{1-x^2}} \left(\sum_{j=1}^n \frac{\sqrt{a_j^2 - 1}}{|x - a_j|} \right) ||f||_{[-1,1]}$$

for every $f \in \mathcal{P}_n(a_1, a_2, \dots, a_n)$ and $x \in (-1, 1)$.

In fact, to prove Theorem 2, we will need the following consequence of the above lemma.

Corollary 3. Suppose (a_i) is a sequence with each $a_i \in \mathbb{R} \setminus [-1, 1]$. Suppose

$$C := \sum_{j=1}^{\infty} \sqrt{a_j^2 - 1} < \infty.$$

Then

$$|f'(x)| \le \frac{2C}{(1-x^2)^{3/2}} ||f||_{[-1,1]}$$

for every $f \in \mathcal{P}_n(a_1, a_2, \dots, a_n)$ and $x \in (-1, 1)$.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We fix $n \in \mathbb{N}$ and $z_0 \in \mathbb{C} \setminus ([-1, 1] \cup \{a_1, a_2, \ldots\})$. It is sufficient to prove the lemma for rational functions

$$f \in S_{2n}(a_1, a_2, \dots, a_n) := \mathcal{P}_{2n}(a_1, -a_1, a_2, -a_2, \dots, a_n, -a_n)$$

Without loss of generality we may assume that $\text{Re}(z_0) \ge 0$ and $\text{Im}(z_0) \ne 0$. By Lemma 1 we may assume that $f \in S_{2n}(a_1, a_2, \ldots, a_n)$ equioscillates on [-1, 1] at least 2n times. That is, there exist $-1 \le x_1 < x_2 < \cdots < x_{2n} \le 1$ such that

$$f(x_j) = \pm (-1)^j ||f||_{[-1,1]}.$$

Hence, there are $y_j \in (x_j, x_{j+1}), j = 1, 2, ..., 2n - 1, \alpha, y_0 \in \mathbb{R}$, and $\sigma \in \{0, 1\}$ such that

$$f(x) = \alpha \frac{(x - y_0)^{\sigma} (x - y_1) \cdots (x - y_{2n-1})}{(x^2 - a_1^2)(x^2 - a_2^2) \cdots (x^2 - a_n^2)}.$$
 (2)

Assume that $\sigma = 1$ and $y_0 \in \mathbb{R} \setminus [-1, 1]$. The remaining cases are similar (in fact easier). Let k be chosen so that

$$x_1 < x_2 < \cdots < x_k < 0 \le x_{k+1} < x_{k+2} < \cdots < x_{2n}$$

Observe that $|k-n| \le 2$, otherwise

$$f(x) - f(-x) \in S_{2n}(a_1, a_2, \dots, a_n)$$

has at least 2n + 2 zeros by counting multiplicities. By using the Mean Value Theorem and Corollary 3 we have

$$(x_{j+1}+1) - (x_j+1) = x_{j+1} - x_j = \frac{|f(x_{j+1}) - f(x_j)|}{|f'(\xi_j)|} = \frac{2}{|f'(\xi_j)|}$$

$$\geqslant \frac{(1-\xi_j^2)^{3/2}}{C} \geqslant \frac{(x_j+1)^{3/2}}{C}, \quad j=1,2,\dots,k-1$$
 (3)

with suitable numbers $\xi_j \in (x_j, x_{j+1})$. Similarly

$$(1 - x_{j+1}) - (1 - x_j) = x_{j+1} - x_j = \frac{|f(x_{j+1}) - f(x_j)|}{|f'(\xi_j)|} = \frac{2}{|f'(\xi_j)|}$$

$$\geqslant \frac{(1 - \xi_j^2)^{3/2}}{C} \geqslant \frac{(1 - x_{j+1})^{3/2}}{C}, \ j = k+1, k+2, \dots, 2n$$
(4)

with suitable numbers $\xi_j \in (x_j, x_{j+1})$. Let $m \in \mathbb{N}$. It follows from (3) that the set

$$K_m := \left\{ j \in \{1, 2, \dots, k-1\} : \frac{1}{(m+1)^2} < x_j + 1 \le \frac{1}{m^2} \right\}$$

has at most 6C + 2 elements. Indeed, if $j \in K_m$, then (3) implies

$$(x_{j+1}+1)-(x_j+1)\geqslant \frac{(x_j+1)^{3/2}}{C}\geqslant \frac{1}{C(m+1)^3}\geqslant \frac{1}{6C}\left(\frac{1}{m^2}-\frac{1}{(m+1)^2}\right)$$

and our claim follows. Therefore

$$\sum_{j=1}^{k-1} (x_j + 1) < (6C + 2) \sum_{m=1}^{\infty} \frac{1}{m^2} \le 12C + 4.$$
 (5)

Similarly, it follows from (4) that the set

$$L_m := \left\{ j \in \{k+1, k+2, \dots, 2n\} : \frac{1}{(m+1)^2} < 1 - x_j \le \frac{1}{m^2} \right\}$$

has at most 6C + 2 elements. Indeed, if $j \in L_m$, then (4) implies

$$(1-x_j)-(1-x_{j+1})\geqslant \frac{(1-x_j)^{3/2}}{C}\geqslant \frac{1}{C(m+1)^3}\geqslant \frac{1}{6C}\left(\frac{1}{m^2}-\frac{1}{(m+1)^2}\right)$$

and our claim follows. Therefore

$$\sum_{j=k+1}^{2n} (1 - x_j) < (6C + 2) \sum_{m=1}^{\infty} \frac{1}{m^2} \le 12C + 4.$$
 (6)

Now, combining (5), (6), and the interlacing property

$$-1 < x_1 < y_1 < x_2 < y_2 < \cdots < x_{2n-1} < y_{2n-1} < x_{2n} < 1$$

we obtain

$$\sum_{i=1}^{k} (y_j + 1) \leqslant 12C + 8 \tag{7}$$

and

$$\sum_{j=k+1}^{2n-1} (1 - y_j) \leqslant 12C + 4. \tag{8}$$

Using the condition for the non-denseness of $\mathcal{P}(a_1, a_2, \ldots)$, we have

$$\sum_{j=1}^{\infty} (a_j^2 - 1) \leqslant C_1 \sum_{j=1}^{\infty} \sqrt{a_j^2 - 1} \leqslant C_2,$$
(9)

where C_1 and C_2 are constants depending only on the sequence (a_j) . Observe that if $y_0 \in \mathbb{R} \setminus [-1, 1]$, then $x - y_0 = A(x+1) + B(1-x)$ with some constants A and B satisfying AB > 0. Writing the factor $x - y_0$ in (2) as the sum of the terms A(x+1) and B(1-x), with some constants A > 0 and B > 0 satisfying

$$AB > 0, (10)$$

we obtain

$$f(x) = f_1(x) + f_2(x), (11)$$

where

$$f_1(x) = \alpha A \frac{(x+1)(x-y_1)\cdots(x-y_{2n-1})}{(x^2-a_1^2)(x^2-a_2^2)\cdots(x^2-a_n^2)}$$
(12)

and

$$f_2(x) = \alpha B \frac{(1-x)(x-y_1)\cdots(x-y_{2n-1})}{(x^2-a_1^2)(x^2-a_2^2)\cdots(x^2-a_n^2)}$$
(13)

and AB > 0 implies

$$|f_1(x)| \le |f(x)|$$
 and $|f_2(x)| \le |f(x)|$, $x \in [-1, 1]$.

Assume now that $||f||_{[-1,1]} \le 1$. Then $||f_1||_{[-1,1]} \le 1$ and $||f_2||_{[-1,1]} \le 1$. By E.7 on p. 153 in [1], for the factors αA in (12) and αB in (13), we have

$$\alpha A \leqslant C_3 \|f_1\|_{[-1,1]} \leqslant C_3 \|f\|_{[-1,1]} \leqslant C_3 \tag{14}$$

and

$$\alpha B \leqslant C_3 \| f_2 \|_{[-1,1]} \leqslant C_3 \| f \|_{[-1,1]} \leqslant C_3$$
 (15)

with a constant $C_3 > 0$ depending only on the sequence (a_j) (this exercise can be easily solved by using the explicit formula for the Chebyshev "polynomial" for the space $\mathcal{P}_n(a_1, a_2, \ldots, a_n)$ on [-1, 1] and by observing that for every fixed $k = 0, 1, \ldots, n$, in the extremal problem

$$\sup_{f} \frac{|b_k|}{\|f\|_{[-1,1]}},$$

where the supremum is taken for all "polynomials" $f \in \mathcal{P}_n(a_1, a_2, \dots, a_n)$ of the form

$$f(x) = b_0 + \sum_{j=1}^n \frac{b_j}{x - a_j}, \quad b_0, b_1, \dots, b_n \in \mathbb{R},$$

the extremal "polynomial" is the Chebyshev "polynomial" for the space $\mathcal{P}_n(a_1, a_2, \dots, a_n)$ on [-1, 1] (in fact, we need this observation only when k = 0). This latter observation can be easily seen by a standard zero-counting argument by noting that if one drops an element from the system

$$\left\{1, \frac{1}{x - a_1}, \frac{1}{x - a_2}, \cdots, \frac{1}{x - a_n}\right\},\tag{16}$$

then the remaining elements form a Chebyshev system on [-1, 1] (αA and αB are the coefficients of the basis element 1 in f_1 and f_2 , respectively, if one writes them as the linear combinations of the basis elements in (16)).

Observe that (7), (8), and $|k - n| \le 2$ imply

$$\prod_{j=1}^{k} |z_0 - y_j| = \prod_{j=1}^{k} |(z_0 + 1) - (y_j + 1)| \le |z_0 + 1|^{k+1} \prod_{j=1}^{k} \left(1 + \left| \frac{y_j + 1}{z_0 + 1} \right| \right)
\le |z_0 + 1|^{n+3} C_4$$
(17)

and

$$\prod_{j=k+1}^{2n-1} |z_0 - y_j| = \prod_{j=k+1}^{2n-1} |(1 - z_0) - (1 - y_j)| \leq |1 - z_0|^{n+3} \prod_{j=k+1}^{2n-1} \left(1 + \left| \frac{1 - y_j}{1 - z_0} \right| \right) \\
\leq |1 - z_0|^{n+3} C_4$$
(18)

with some constant $C_4 > 0$ depending only on the sequence (a_j) and $|1 - z_0|$. Further, it follows from (9) that

$$\prod_{j=1}^{n} |z_0^2 - a_j^2| = \prod_{j=1}^{n} |(z_0^2 - 1) - (a_j^2 - 1)| = |z_0^2 - 1|^n \prod_{j=1}^{n} \left| 1 - \frac{a_j^2 - 1}{z_0^2 - 1} \right|
\geqslant C_5 |z_0^2 - 1|^n.$$
(19)

with some constant $C_5 > 0$ depending only on (a_j) and $|z_0^2 - 1|$. The theorem now follows from (2) and (10)–(19).

Reference

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.